
SHORTER COMMUNICATIONS 1201 

are unlikely to be successful. The parameter c/ye must be 
included in the correlation equation. 
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THERMAL CONDUCTIVITY OF PACKED BEDS AND POWDER BEDS 
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NOMENCLATURE P, 
43 

area of continuous phase perpendicular to the my 
plane ; 
accommodation coefftcient ; 
constant in equation (1); 
constant in equation (1) ; 

pressure of two particles against each other ; 

constant in equation (16); 
Young’s modulus ; 
gas pressure in the pore ; 
normal gas pressure, (9.93 x lo4 N/mZ); 
thickness and width of the skeleton of Fig. l(d) ; 

integer defined in equation (20); 
R, thermal resistance ; 
R’, thermal resistance in the microgap ; 
R L, thermal resistance determined by narrowing of 

the lines of the heat flow in the region adjacent to 
the place of contact ; 

% thermal resistance of the oxidic film ; 
R 

height of particle microroughnesses ; 
ratio of gas heat capacities at constant pressure 
and volume ; 
coefficient of particle adhesion ; 
empirical coeflicients, k, = (h,/L) x 10’ ; 
characteristic size of an elementary cell (particle 
diameter) ; 
characteristic size of a pore ; 
number of particles in a layer defined in equation 
(15); 
discontinuous phase volume fraction ; 
Prandtl number ; 

W’ thermal resistance of microroughness at the place 
of contact; 

rJp, radius of a contact spot; 
‘I mean absolute temperature of packed beds or 

powder beds. 

Greek letters 
AR, thermal resistance in a layer ; 
Ax, small increment in the x axis: 

6, one-half of h ; 
II3 constant defined in equation (7); 

Ao. gas molecular free path at normal pressure ; 
1, thermal conductivity; 
2, thermal conductivity in the microgap; 
/I 0, thermal conductivity of gas at normal pressure ; 
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P? Poisson’s ratio ; 
ttg, ratio of 1,/I,; 
v’ 9’ ratio of Lb/n, 

Subscripts 
c, contact; 
e. equivalent; 
ec, equivalent continuous phase: 

9. gas; 
cm gas conduction ; 
9’. gas radiation ; 
s. solid. 

INTRODUCTION 

THE TECHNIQUE reported by the writers for predicting the 
thermal conductivitv of heterogeneous solid mixtures [l] is 
modified to account for contact resistance. The contact 

Heat Flow 

Discontinuous Phase 

resistance model discussed in reference [2] is combined with 
the technique. Results of applying the modified technique to 
powder and packed beds are compared with experimental 
data. Other studies [3-181 have been considered in pre- 
paring this communication. 

ANALYSIS 

A schematic of a packed bed or powder bed of unit 
volume is shown in Fig l(a). Based on the development in 
[1], the discontinuous phase, mainly gases in the pores of 
the packed beds or powder beds, can be rearranged in the 
continuous phase, mainly particles, and expressed by a 
parabolic distribution ; 

y = B + cx2 (1) 

where B = J(3P,/2) and C = -4J($P,), as shown in 
Fig. l(b). 

ntinuous Phase 

L Discontinuous Phase 

Enlarged View of 
l/4 of Elementary 

CM 

(d) H&Flow 

Skeletal Representation Resistance Diagram for Arbitrarily 

Of l/4 of Elementary WI Selected Slab Shown in(b) 

FIG. 1. Model for the study of the thermal conductivity of packed 
and powder beds. 

beds 
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The contact resistance of the particles in the continuous 
phase can be calculated as follows [2]. Assume the granular 
particles to be spheres in a cubic arrangement. The elemen- 
tary cells are shown in Fig l(c) Assume the particles to be 
symmetric. Then, one quarter of an elementary cell, as seen in 
Fig l(c), can be represented in skeletal form as shown in 
Fig l(d). Considering Fig l(d), it can be seen that there exists 
a functional relationship between P, the discontinuous phase 
volume fraction, and h/Z, the ratio of the thickness or width 
of the skeleton to the characteristic size of the pore. This 
relationship is 

p, =.f(W); (2) 

where h = 26, the thickness and width of the skeleton in 
Fig. l(d) and I = L - h. The functional relationship plotted 

of the heat flow in the region adjacent to the place of contact, 
can be expressed as 

where 

1 
R,&-. 

2r,,l, ’ 
(6) 

(7) 

and 

rsP = 0.725 &pL/Z) 

tl = 2(1 - PZ) 
-. 

E 

Equation (7) is Hertz formula [19]. R,, which is the resist- 

s.9 I!, ,!2 ,!4 I!, 1~3 :.O 212 2!4 

h/l 

FIG. 2. Graphical representation of P, as a function of h/l 

resistance in an elementary cell. The contact resistance and ante expressed as 
the resistance of the gas in the microgap for one quarter of 
the elementary cell can be designated as R, and R;, respec- h,k, 

tively. R, and R; can be expressed as 

R, = R, + R,, + R, 

and 

R,, = -. 
xi&l, 

(8) 

(3) h, in equation (8) is the height of particle microroughnesses. 
The ratio 

(4) 

h 
-! = k; 1O-3 
L 

(9) 

R,, the contact thermal resistance, is defined as is fairly stable for various sizes of particles. k, is an empirical 
coefficient Equation (8) can be rewritten as 

I 

4 = G (5) 
Rs, = a; (10) 

R,, R, and R, in equation (3) will be discussed as follows. SP s 

R,, which is the resistance due to the narrowing of the lines where k, is the coefficient of particle adhesion. R,, which is 
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the resistance of the oxidic film, can be neglected in most 
cases [20]. 

&, the thermal conductivity of the gas in a pore. consists of 
two components, A,, and ;Ig,,,, or 

,I$, = i,, + A,, (11) 

Similarly, Xb, the thermal conductivity of gas in the microgap. 
consists of R& and I&,, or 

2; = ,I;, + ,?;_ (12) 

I,, and &,, the radiant thermal conductivities of the gas in 
the pore and in the micrograp, can be calculated from the 
technique proposed by Loeb [S] or Chudnovsky [21]. 
For low temperature, d,, and &, can be neglected. According 
to Prasolov [22], &,, can be expressed as 

where 

B,= 4k 2- zi 
zy Pi-_’ A&, 

Similarly 

IZbrn z Ao 
1 -t B’/k,Hl 

(14) 

For simplicity, $, can be assumed approximately equal to 
Xb in the calculatton. 

Now one can proceed to develop au expression for the 
thermal conductivity of packed beds and powder beds 
considering contact resistance. Consider an arbitrary layer 
with thickness Ax as shown in Fig. l(b). The corresponding 
resistance diagram can be drawn on Fig. l(e). The number 
of particles, n, in the layer can be calculated as 

Table 1. Comparison of predicted thermal conductivities with experimentally determined conductivities for packed beds and 
powder beds 

Mixture A$ P, 

Percentage Percentage 
L(mm) L,. 4, of f% of 

deviation deviation 

Steel spheres in 
air [23] 

Steel spheres in 
air [7] 

Steel spheres in 
air [7] 

Plumbum shot 
in air [71 

Plumbum shot 
in air [7] 

MgO in air at 
375°K [21-j 

MgO in air at 
502,4”K [21-j 

MgO in air at 
572.1”K [5] 

MgO in air at 
723°K [5] 

MgO in air at 

810°K [5] 

Average percentage 
of deviatiou 

38.4 0.026 0.38 3.18 

45.0 0.0272 0.413 3.2 

0.525 

c241 
0.40 

45.0 00272 0.406 3.2 060 

34.3 0.0273 0.42 1.6 0.418 

34.3 0.0273 0.433 64 0404 

24.4 0.0318 0.42 o-268 0.433 

279 0.0387 0.42 0.268 0.502 

22.1 0.42 0.268 0552 

16 0.42 0.268 0661 

13 

0045 

0.0533 

0.056 0.42 0.268 0,666 

0.525 0 

0.51 27.5 

0.54 - 10.0 

0.49 17.2 

0.473 17.1 

0.425 -1.9 

0.515 2.6 

@556 0.7 

0.67 1.4 

@68 2.1 

8.1 

0,529 0.8 

0.469 17.3 

0.489 - 18.5 

0.433 3.6 

0.39 -3-5 

0384 -11.3 

O-465 -7.4 

0.528 -4-4 

0602 -8.9 

0.617 - 74 

8.3 

t Units of I: W/m deg. 
$ Luikov et al. [2]. 
I Equation (19). 
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The total number of quarter elementary cells in the layer is 
4n. AR,, the equivalent resistance of the continuous phase 
in the layer, can be expressed for the 4n quarter elementary 
cells as 

AR, = AR, 

4n terms 

Ax 1 
=-----+ 

AX1 - Y) 

Ax 4&R; EL3 
=~+-...--- 
&(1-y) Rb+R,24(1-y)Ax 

where 

Ax D =----_+-.----. 
&(l - y) (1 - y)Ax’ 

(16) 

xL3R& 

D = 6(R; + R,) 

AR,, the equivalent resistance in the layer, can be expressed as 

AR,= AWL 
AR, + AR,’ 

Substituting equation (16) into equation (17), yields 

(17) 

Ax 

[ 

AX D 

AR = n,y m-Y)+-yY)Ax 1 e 
1 AX 

+- 
E,y 

Ax3 + DA&t 

= ;l,yAx* + DA&y+ A,(1 - y) Ax? 
(18) 

Summing up all x’s from -4 to f, equation (18) becomes 

812 

R, = 2 
c 

Ax3 + D&Ax 

&yAx2 + D+Isy + s&(1 - y) Ax2 

I/Z 

2 
c 

Axs + D&Ax 
= __ 

II 
&,yAx2 + D&&y + J.&l - y)Ax2 

1-B 40 

+7+l-B. (19) 

The expression for y, the distribution function, can be 
obtained from equation (1). The value of Ax should be 
compatible with the value of L. Before computing Ax, 4 
which is some integer should be determined first. 4 is 
approximated by 

Once g is determined, Ax can be determined by 

Ax=!!!?. 
4 

(21) 

Mathematically, 4 + 1 represents the number of terms to 
be summed in equation (19) for the value of Ax determined 
from equation (21). 

Once R, is determined from equation (19), & is simply 
the numerical reciprocal of R, 

A sample problem [2, 23]-steel spheres in air-will be‘ 
used to illustrate the application of equation (19) in predicting 
the thermal conductivity of packed beds and powder beds. 

Reference data: L = 3.18 x 10-3; Pd = 0.38; 1, = 38.4; 
&=OQ26;T=320”K;h/l=1~34;h/L=0573;H= lo5 
N/m’;v,= v;=O.677 x 10-3;k,=3;k,= 15;,$=003; 
experimental equivalent thermal conductivity 2, = 0.525 
W/m deg [24]. 

Solution: L = 3.18 x 10T3 and h/L = 0573 a h = 0.0182 
vg = 1&, * 1, = v& = OQOO677 x 38.4 = 0.026. 

From equation (5), 

1 
R,I---= 

1 

Q_. 003 x 0.00318 
= 10480. 

From equations (4) and (5). 

= 
R;,=-= 4Lk,k, 

4 x 0.00318 x 3 x 1.5 

l’hz103 
= 

B OG26 x (0~182)’ lo3 
665. 

x 

From equation (l), P,, = 0.38 * B = 0,755 and C = - 5.3. 

From equation (20), 4 G T =z. 4 = 119. 

From equation (21), Ax = 3 = OGO317. 
4 

Substituting all the above data into equation (19), yields 

1, = 0.529 W/m deg. 

which agrees within 0.8 per cent with the experimental value 
of &. Table 1 compares thermal conductivities of packed 
beds and powder beds as predicted by equation (19) and 
thermal conductivity values as obtained by the technique 
proposed by Luikov et al. [2] with experimental data avail- 
able from the literature. J., and 1, in Table 1 can be obtained 
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experimentally [2] or from equations (5), (11) and (13). 
The average percentage of deviations of the predicted values 
from the measured values of thermal conductivity in Table 1 
are 81 per cent using Luikov ea al. and 8.3 per cent by 
equation (19). Deviations in some cases are more than 
100 per cent, as shown by Luikov et al. (21. when contact 
resistance is not considered. 

SUMMARY 

A general equation for predicting the thermal conductivity 
of packed beds and powder beds has been presented. The 
equation was developed in terms of the thermal conductivity 
of the particles and the gas in the pores, discontinuous phase 
volume ratio, contact resistance, size of the particles, radia- 
tive transfer in the gaseous pores, pore size, contact pressure 
between particles, and surface properties of the particles. 
Although spherical particies were assumed in the model, 
the equation can be applied to other particle shapes as long 
as the mean diameter of the particles can be determined. 
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