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are unlikely to be successful. The parameter t/yc must be

included in the correlation equation.
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NOMENCLATURE

A  area of continuous phase perpendicular to the xy
plane;

a, accommodation coefficient ;

B, constant in equation (1);

C, constant in equation (1);

D, constant in equation (16);

E, Young’s modulus;

H, gas pressure in the pore;

H,,  normal gas pressure, (993 x 10* N/m?);

h, thickness and width of the skeleton of Fig. 1(d);

h,, height of particle microroughnesses;

k, ratio of gas heat capacities at constant pressure
and volume;

ky, coefficient of particle adhesion;

k,, k,, empirical coefficients, k,, = (h,/L) x 10,

L, characteristic size of an elementary cell (particle
diameter);

1, characteristic size of a pore;

n, number of particles in a layer defined in equation
(15);

P, discontinuous phase volume fraction ;

Pr, Prandtl number;

P, pressure of two particles against each other;

q, integer defined in equation (20);

R, thermal resistance ;

R, thermal resistance in the microgap;

R;, thermal resistance determined by narrowing of

the lines of the heat flow in the region adjacent to
the place of contact;

R,, thermal resistance of the oxidic film ;
R,,, thermal resistance of microroughness at the place
of contact;
T radius of a contact spot ;
T, mean absolute temperature of packed beds or
powder beds.
Greek letters
AR, thermal resistance in a layer;
Ax, small increment in the x axis;
o, one-half of h;
n, constant defined in equation (7);
Ay, gas molecular free path at normal pressure ;
A thermal conductivity;
2, thermal conductivity in the microgap;

Aos thermal conductivity of gas at normal pressure ;
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U, Poisson’s ratio;
v ratio of /19/13;
Vo ratio of 4;/4,
Subscripts
c, contact;
e, equivalent;
ec, equivalent continuous phase;
g gas;
gm, gas conduction;
gr. gas radiation;
s, solid.

INTRODUCTION
THE TECHNIQUE reported by the writers for predicting the

thermal conductivity of heterogeneous solid mixtures [1] is
modified to account for contact resistance. The contact

(a)
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resistance model discussed in reference [ 2] is combined with
the technique. Results of applying the modified technique to
powder and packed beds are compared with experimental
data. Other studies [3-18] have been considered in pre-
paring this communication.

ANALYSIS
A schematic of a packed bed or powder bed of unit
volume is shown in Fig. 1(a). Based on the development in
[1]. the discontinuous phase, mainly gases in the pores of
the packed beds or powder beds, can be rearranged in the
continuous phase, mainly particles, and expressed by a

parabolic distribution;
y =B+ Cx? (1)

where B = ./(3P,/2) and C = —4/(3P,), as shown in
Fig 1(b).
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FiG. 1. Model for the study of the thermal conductivity of packed beds
and powder beds.
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The contact resistance of the particles in the continuous
phase can be calculated as follows [2]. Assume the granular
particles to be spheres in a cubic arrangement. The elemen-
tary cells are shown in Fig 1(c). Assume the particles to be
symmetric. Then, one quarter of an elementary cell, as seen in
Fig. 1(c), can be represented in skeletal form as shown in
Fig. 1(d). Considering Fig 1(d), it can be seen that there exists
a functional relationship between P,, the discontinuous phase
volume fraction, and h/l, the ratio of the thickness or width
of the skeleton to the characteristic size of the pore. This
relationship is

Py =f(h/1); 2

where h = 24, the thickness and width of the skeleton in
Fig. 1(d) and I = L — h. The functional relationship plotted
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of the heat flow in the region adjacent to the place of contact,
can be expressed as

1

R, = ;
L TN (6)
where
up = 0725 3/(npL/2) Y
and
_A -y
—5

Equation (7) is Hertz formula [19]. R, which is the resist-

05

0-4}
0-3-
f
o2
ol
1 ] | 1 | 1 1
009 -0 1-2 -4 1-6 18 20 2-2 2-4
t

FiG. 2. Graphical representation of P, as a function of h/l.

resistance in an elementary cell. The contact resistance and
the resistance of the gas in the microgap for one quarter of
the elementary cell can be designated as R, and R}, respec-
tively. R, and R can be expressed as

R.=R + R, + R, 3)
and
R, = %’;—JZ* @
R,, the contact thermal resistance, is defined as
R, = L (5)
AL

R;, R,,, and R, in equation (3) will be discussed as follows.
R, which is the resistance due to the narrowing of the lines

ance expressed as

_ hk, ®)
L w2 As

h, in equation (8) is the height of particle microroughnesses.
The ratio

M k107 )
L_ m

is fairly stable for various sizes of particles. k,, is an empirical
coefficient. Equation (8) can be rewritten as

Lkk,

* 104,

(109)

where k, is the coefficient of particle adhesion. R,, which is
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the resistance of the oxidic film, can be neglected in most
cases [20].

2,4, the thermal conductivity of the gas in a pore, consists of
two components, 4, and A, or

an

Ay == dgp Tt Ay

Similarly, 4, the thermal conductivity of gas in the microgap.
consists of 4, and 4, or

(17

YR
L= Ag + Ao

Ay and A, the radiant thermal conductivities of the gas in
the pore and in the micrograp, can be calculated from the
technique proposed by Loeb [8] or Chudnovsky [21].
For low temperature, A, and 4, can be neglected. According
to Prasolov {22}, 4, can be expressed as
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where

4k 2—a
B =———""2prt AoH,
K+l a Aoty

Similarly
A = MiO
™ 1+ Bk HI
For simplicity, 4, can be assumed approximately equal to
4y in the calculation.

Now one can proceed to develop an expression for the
thermal conductivity of packed beds and powder beds
considering contact resistance. Consider an arbitrary layer
with thickness Ax as shown in Fig. 1(b). The corresponding
resistance diagram can be drawn on Fig. 1{e). The number
of particles, n, in the layer can be calculated as

A, Ax

(14)

A n=—r 15)
Agm = —9,—3 (13) i‘yz E ’
1+ B/HI "3
Table 1. Comparison of predicted thermal conductivities with experimentally determined conductivities for packed beds and
powder beds
Percentage Percentage
Mixture ¥ Ay P, L{mm) Aexg. AL, of A§ of
deviation deviation

Steel spheres in 384 0026 0-38 318 0-525 0-525 0 0-529 0-8
air [23] [24]

Steel spheres in 450 00272 0-413 32 0-40 051 275 0-469 173
air {7}

Steel spheres in 450 00272 0-406 32 060 054 —100 0489 ~185
air [7]

Plumbum shot 343 00273 042 16 0418 049 172 0433 36
in air [7]

Plumbum shot 343 00273 0433 64 0404 0473 171 0-39 ~35
in air [7]

MgO in air at 24-4 00318 042 0268 0433 0425 —19 0384 ~113
375°K [21]

MgQ in air at 279 00387 042 0-268 0-502 0-515 2:6 0-465 ~74
502-4°K [21]

MgO in air at 221 0045 0-42 0-268 0-552 0-556 07 0-528 ~44
5721°K [5]

MgO inairat 16 00533 042 0268 0661 067 14 0602 —89
723°K [5]

MgO in air at 13 0056 042 0268 0666 068 21 0617 —74
810°K [5]

Average percentage 81 83

of deviation

t Unitsof 1: W/m deg.
1 Luikov et al. [2].
§ Equation (19).
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The total number of quarter elementary cells in the layer is
4n. AR,,, the equivalent resistance of the continuous phase
in the layer, can be expressed for the 4n quarter elementary
cells as

AR, = AR,

1 %
+1+1 1+1)++1+1
aR,Tak) TR TRy T TR TR
4n terms
Ax 1
= +
Al = 1 1Y 44,,,Ax
4R, ' 4R, 47[(L 3
3°\2
A 4R.R, nl?
T Al —y) R+ R.24(1 — y)Ax
Ax D
= -+ 3 (16)
where Al -y (A-yax
_ =PRR,
©6(R, + R
AR, the equivalent resistance in the layer, can be expressed as
AR AR
.= e an
AR, + AR,,
Substituting equation {16) into equation (17), yields
ﬂ[ Ax N )] ]
AR, = oA =9) "(= pAx
Ax + D ]+ Ax
Hi-y (-pax] iy
Ax® + DA,
_ x* + DAAX 18)

AYAXE + DAAy + A(l — y) Ax?

Summing up all x’s from —3 to §, equation (18) becomes
B2

R =32 Ax? + DA Ax
< AyAx? + DA Ay + A{l — y) Ax?

g
1/2

+2 ax . D
Ay Ax

B2

B/2

=2

Ax® + DA Ax
A 9Ax% + DAAy + A{l — y) Ax?

1-B 4D
+_~——. —

Ay 1-8 19
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The expression for y, the distribution function, can be
obtained from equation (1). The value of Ax should be
compatible with the value of L. Before computing Ax, g
which is some integer should be determined first. g is
approximated by

B2
=7 20
9= (20)
Once g is determined, Ax can be determined by

Ax == @

Mathematically, ¢ + 1 represents the number of terms to
be summed in equation (19) for the value of Ax determined
from equation (21).

Once R, is determined from equation (19), 4, is simply
the numerical reciprocal of R,.

A sample problem [2, 23]—steel spheres in air—will be’

used to iltustrate the application of equation (19) in predicting
the thermal conductivity of packed beds and powder beds.

Reference data: L = 318 x 1073; P, = 038; i = 384;
Ao = 0026; T = 320°K; b/l = 1-34; h/L = 0-573; H = 10°
N/m?;v, = v, = 0677 x 1073k, = 3;k, = 1'5; 4, = 003;
experimental equivalent thermal conductivity A, = 0-525
W/m deg [24]

Solution: L = 3:18 x 1073 and h/L = 0-573 = h = 00182
vy = A/ = 4y = v 4, = 0000677 x 384 = 0026,

From eguation (3),
R = ee ——— . == 10480.

From equations (4) and (5),

. 4Lkgk, = 4 x 000318 x 3 x 15
‘T LR10° 0026 x (000182 x 10°

665.

From equation (1), P; = 038 = B = 0-755and C = —53,
B2
From equation (20), g = —L/— =g = 119.

) B)2
From equation {21), Ax = — = 0-00317.
q

Substituting all the above data into equation (19), yields
A, = 0529 W/m deg.

which agrees within 0-8 per cent with the experimental value
of 4. Table 1 compares thermal conductivities of packed
beds and powder beds as predicted by equation (19) and
thermal conductivity values as obtained by the technique
proposed by Luikov et al. [2] with experimental data avail-
able from the literature. J_and A, in Table 1 can be obtained
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experimentally [2] or from equations (5), (11) and (13).
The average percentage of deviations of the predicted values
from the measured values of thermal conductivity in Table 1
are 81 per cent using Luikov er al. and 83 per cent by
equation (19). Deviations in some cases are more than
100 per cent, as shown by Luikov et al. [2]. when contact
resistance is not considered.

SUMMARY

A general equation for predicting the thermal conductivity
of packed beds and powder beds has been presented. The
equation was developed in terms of the thermal conductivity
of the particles ard the gas in the pores, discontinuous phase
volume ratio, contact resistance, size of the particles, radia-
tive transfer in the gaseous pores, pore size, contact pressure
between particles, and surface properties of the particles.
Although spherical particles were assumed in the model,
the equation can be applied to other particle shapes as long
as the mean diameter of the particles can be determined.
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